Pair approximation
This approach is widely used and shows good results compared to structured populations simulations(hauert2005), as we will show.
Now, we will focus on the pair of interacting players $p_{A,B}$, and all pairs connecting to A and B. Fig. shows an illustration of that, where x,y,z denotes the three connections of A and u,v,w the connections of B.
The transition probabilities are given by one strategy of a pair flipping $p_{A,B\rightarrow B,B}$, which is given by
\[\begin{align} p_{A,B\rightarrow B,B} = \sum_{x,y,z}\sum_{u,v,w} f(P_B - P_A) \times \frac{p_{x,A}\, p_{y,A}\,p_{z,A}\,p_{A,B}\,p_{u,B}\,p_{v,B}\,p_{w,B}}{p_A^3\,p_B^3} \end{align}\]where $f(P_B - P_A)$ is the probability of strategy adoption, and $p_{i,A}$ is the probability that the pair (i,A) have the strategy of A and the strategy of i given by the sum. With the sums, we consider all possible strategy pairs in all three directions of connections of each player interacting.

In the end, we need two differential equations, that are given by
\[\begin{align} \dot{p}_{c,c} = \sum_{x,y,z} \, [n_c(x,y,z)+1]\,p_{d,x}\,p_{d,y}\,p_{d,z} \sum_{u,v,w} p_{c,u}\,p_{c,v}\,p_{c,w}\,f(P_c(u,v,w)-P_d(x,y,z)) \\ - \sum_{x,y,z} \, n_c(x,y,z)\, p_{c,x}\,p_{c,y}\,p_{c,z}\sum_{u,v,w} p_{d,u}\,p_{d,v}\,p_{d,w}\, f(P_d(u,v,w)-P_c(x,y,z)) \end{align}\] \[\begin{align} \dot{p}_{c,d} = \sum_{x,y,z} \, [1 - n_c(x,y,z)]\,p_{d,x}\,p_{d,y}\,p_{d,z} \sum_{u,v,w} p_{c,u}\,p_{c,v}\,p_{c,w}\,f(P_c(u,v,w)-P_d(x,y,z)) \\ - \sum_{x,y,z} \, [2 - n_c(x,y,z)]\, p_{c,x}\,p_{c,y}\,p_{c,z} \sum_{u,v,w} p_{d,u}\,p_{d,v}\,p_{d,w}\, f(P_d(u,v,w)-P_c(x,y,z)) \end{align}\]the changes always come from a (d,c) interaction, since we are using imitation. In both equations, the first term is related to a defector changing to cooperation, and the second term a cooperator changing to defection. In the first equation, we have to consider that, if in (A,B) A changes from (d,c) to (c,c), we get $1+n_c$ new (c,c) connections. And also the negative part where B changes from (d,c) becomes (d,d), where we lose $n_c$ pairs (c,c).

Code
1
2
3
4
5
6
7
8
9
# C. Hauert, S. György, Game theory and physics, Am. J. Phys. 73, 405 (2005)
# x u
# | |
# | |
# y ----- A ------ B ------ v
# | |
# | |
# z w
Parameters
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
using Plots, Printf,OrdinaryDiffEq, LinearAlgebra, DelimitedFiles, PlutoUI
begin
const K = 0.1
const k = 4
const R = 1.0
#const T = 1.1
const P = 0.0 #not used
const S = 0.0 #not used
# HomotopyContinuation
#@var ρcc ρcd
end
Definitions
1
2
3
4
5
6
7
8
9
10
11
12
function W_fermi(ΔP, K)
return 1.0 / (1.0 + exp(-ΔP / K))
end
function payoff_C(nc, R, S)
return (nc+1)*R + (k - nc)*S
end
function payoff_D(nc, T, P)
return (nc+1)*T + (k - nc)*P
end
Master eq.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function calculo_pho(ρ⃗, params)
T, R, P, S, K = params
eq_cc = 0.0
eq_cd = 0.0
# ρ₁₁ ρ₁₂ -> ρdd ρdc
# ρ₁₂ ρ₂₂ -> ρcd ρcc
p = [1.0-(ρ⃗[1]+2*ρ⃗[2]) ρ⃗[2];
ρ⃗[2] ρ⃗[1]]
for x in 0:1 # todas configuraçoes possiveis (D = 0 e C = 1)
for y in 0:1
for z in 0:1
for u in 0:1
for v in 0:1
for w in 0:1
nc_xyz = x + y + z
nc_uvw = u + v + w
Pc_xyz = payoff_C(nc_xyz, R, S)
Pc_uvw = payoff_C(nc_uvw, R, S)
Pd_xyz = payoff_D(nc_xyz, T, P)
Pd_uvw = payoff_D(nc_uvw, T, P)
Wcd = W_fermi(Pc_uvw - Pd_xyz, K)
Wdc = W_fermi(Pd_uvw - Pc_xyz, K)
A₁ = p[1,1+x]*p[1,1+y]*p[1,1+z]*p[2,1+u]*p[2,1+v]*p[2,1+w] #ρdi ρcj
A₂ = p[2,1+x]*p[2,1+y]*p[2,1+z]*p[1,1+u]*p[1,1+v]*p[1,1+w] #ρci ρdj
eq_cc += (nc_xyz+1)*A₁*Wcd - nc_xyz*A₂*Wdc
eq_cd += (1-nc_xyz)*A₁*Wcd - (2-nc_xyz)*A₂*Wdc
#@printf "%d %d %s\n" nc_xyz nc_uvw A₁
end
end
end
end
end
end
return eq_cc, eq_cd
end
Soluton
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
const R_num = 1
const S_num = 0.
const P_num = 0
const K_num = 0.1
for T_num in 1:0.1:3
params = [R_num; T_num; S_num; P_num; K_num]
function eq_c_numeric3!(du, u, p, t)
ρcc = u[1]
ρcd = u[2]
ρ⃗₀ = [ρcc; ρcd]
du[1], du[2] = calculo_pho(ρ⃗₀, p)
end
u0 = [0.55,0.5]
tspan = (0.0, 1000.0)
# Solve the ODE
prob = ODEProblem(eq_c_numeric3!, u0, tspan, params)
solution3 = solve(prob, Vern9())
println("$T_num $(solution3[end][1])")
end