Post

EGT


Packages

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#= -----------------------------------------------------------------------------------------------
											Packages
----------------------------------------------------------------------------------------------- =#

#import Pkg; Pkg.add(["Plots", "OffsetArrays", "StructArrays", "PlutoUI", "Printf", "DelimitedFiles", "Statistics", "Random", "Markdown", "InteractiveUtils"])

using OffsetArrays, StructArrays, PlutoUI, Printf, DelimitedFiles, Statistics , Random, Markdown, InteractiveUtils, Graphs, Plots, GraphPlot, Dates


#= -----------------------------------------------------------------------------------------------
									Evolutionary Game Theory
----------------------------------------------------------------------------------------------- =#

Initialization

Define players

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#= -----------------------------------------------------------------------------------------------
										Initialization
----------------------------------------------------------------------------------------------- =#


#= -----------------------------------------------------------------------------------------------
										Define players
----------------------------------------------------------------------------------------------- =#

mutable struct Players
	index::Int64
    strategy::Int64
    contribution::Float64
	payoff::Float64
end


Initialize players

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#= -----------------------------------------------------------------------------------------------
										Initialize players
----------------------------------------------------------------------------------------------- =#


function initialize_players(player) 
	
	for k in 0:N-1
		j=k%L
		i=k/L
		if rand() <= 0.5 # aleatório
		#if k <= N/2 # listra
		#if j>L/3 && j<2*L/3 && i>L/3 && i<2*L/3 # quadrado central
	    	player[k] = Players(k, 1, 1, 0)
		else
			player[k] = Players(k, 0, 0, 0)
		end
	end
end

Define lattice

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#= -----------------------------------------------------------------------------------------------
									Initialize lattice
----------------------------------------------------------------------------------------------- =#


function initialize_lattice(viz) # square lattice
	
	L2 = L*L
	N = L*L

	for x in 0:N-1	
	
		viz[x,0] = x 		#self-interaction
		viz[x,1] = x - L 	#top neighbor
		viz[x,2] = x + 1 	#right neighbor
		viz[x,3] = x + L 	#botton neighbor
		viz[x,4] = x - 1 	#left neighbor
				
		if (x < L) 
			viz[x,1] = x + (L - 1) * L 		#top boundary
		end
		if (x % L == 0) 
			viz[x,4] = x + (L - 1) 			#left boundary
		end
		if (x >= L2-L) 
			viz[x,3] = x - (L - 1) * L 		#botton boundary
		end
		if ((x-L+1) % L == 0) 
			viz[x,2] = x - (L - 1) 			#right boundary
		end
	end
end


Functions

1
2
3
4
#= -----------------------------------------------------------------------------------------------
										Functions
----------------------------------------------------------------------------------------------- =#

Payoff calculation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#= -----------------------------------------------------------------------------------------------
									Payoff calculation
----------------------------------------------------------------------------------------------- =#

function payoff_calculation_pd(player, viz, r, x) 

	player[x].payoff = 0.
	
	R = 1.
	T = 1 + r
	S = -r
	P = 0.
	
	payoff_matrix = [
		P T
		S R
	]

	for k in 1:G-1
		player[x].payoff += 
			payoff_matrix[1+player[x].strategy, 1+player[viz[x,k]].strategy]
	end
end


function payoff_calculation_pgg(player, viz, r, x) 
	
	player[x].payoff = 0.
	
	for j in 0:G-1
		x_aux = viz[x,j]
		pool = 0
		for k in 0:G-1	
			pool += player[viz[x_aux,k]].contribution
		end
		player[x].payoff += r*pool/G - player[x].contribution	
	end
end

function payoff_calculation_pgg_focal(player, viz, r, x) 
	
	player[x].payoff = 0.
	
	for j in 0:0
		x_aux = viz[x,j]
		pool = 0
		for k in 0:G-1	
			pool += player[viz[x_aux,k]].contribution
		end
		player[x].payoff += r*pool/G - player[x].contribution	
	end
end

Update rule

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#= -----------------------------------------------------------------------------------------------
									Strategy adoption
----------------------------------------------------------------------------------------------- =#


function update_rule(player, x, y)


    Px = player[x].payoff
    Py = player[y].payoff

	Wxy = 1.0/(1.0 + exp(-(Py-Px)/K))
	a = rand()

	if Wxy > a
	    player[x].strategy = player[y].strategy
		player[x].contribution = player[y].contribution	
	end
end

Monte Carlo Step

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#= -----------------------------------------------------------------------------------------------
											MCS
----------------------------------------------------------------------------------------------- =#


function mcs(player, viz, r)

	for i in 0:N-1

		x = rand(0:N-1) #tem q ir de 0 a N-1
		y = rand(1:G-1) # tem q ir de 1 a 4
		vizinho = viz[x,y] 

		if player[vizinho].strategy != player[x].strategy
		
			payoff_calculation_pgg_focal(player, viz, r, x)
			payoff_calculation_pgg_focal(player, viz, r, vizinho)
			
			update_rule(player, K, x, vizinho)		
		end	
	end
end

Time dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#= -----------------------------------------------------------------------------------------------
										Time Dynamics
----------------------------------------------------------------------------------------------- =#

function time_dynamics(player, viz, r, seed)

	for t in 1:tmax

        dens(player, t)  
		mcs(player, viz, r)   	

    end
end

Main

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#= -----------------------------------------------------------------------------------------------
											Main
----------------------------------------------------------------------------------------------- =#

function main(n,r)

	viz = OffsetArray{Int64}(undef, 0:N-1, 0:G-1)
	player = OffsetArray{Players, 1}(undef, 0:N-1) 
	
	# iterations
    for i in 1:n

		aaa = now()
		seed = Int(floor(datetime2unix(aaa)))
		#seed = 12312
		Random.seed!(seed) # put number inside () to fix seed

		initialize_players(player)
		initialize_lattice(viz)
		time_dynamics(player, viz, r, seed)

    end
end

Data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#= -----------------------------------------------------------------------------------------------
											Data
----------------------------------------------------------------------------------------------- =#
function dens(player, t, seed, r)
   

        dens_c = sum(player[i,j].strategy for i in 1:N)

        @printf "%d %.5f\n" t dens_c/N 


	# -----------------------------------------------------------

    function save_densities()
        directoryPath = string(@__DIR__, "/data/")
		mkpath(directoryPath)  # Create directory if it doesn't exist
        filename = @sprintf("%sdata_r%.3f_seed%d.dat",directoryPath, r, seed)
        
		open(filename, "a") do file
            dens_c = sum(player[i,j].strategy for i in 1:N)
            @printf(file, "%d %.5f\n" t dens_c/N)
        end # end the open file
    end


    save_densities()
end


Run

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#= -----------------------------------------------------------------------------------------------
											Run
----------------------------------------------------------------------------------------------- =#
function run()
end

const L=30 	# linear population size
const N=L^2 	# population size
const tmax=10^2
const G=5 		# PGG group size
const K=0.1

n = 1 # amostras
r_range = 3.3 #3.3:0.1:5.0


for r in r_range
	main(n,r)
end



This post is licensed under CC BY 4.0 by the author.