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Finding ways to overcome the temptation to exploit one another is still a challenge in behavioural
sciences. In the framework of evolutionary game theory, punishing strategies are frequently used to pro-
mote cooperation in competitive environments. Here, we introduce altruistic punishers in the spatial
public goods game. This strategy acts as a cooperator in the absence of defectors, otherwise it will punish
all defectors in their vicinity while bearing a cost to do so. We observe three distinct behaviours in our
model: i) in the absence of punishers, cooperators (who don’t punish defectors) are driven to extinction
by defectors for most parameter values; ii) clusters of punishers thrive by sharing the punishment costs
when these are low; iii) for higher punishment costs, punishers, when alone, are subject to exploitation
but in the presence of cooperators can form a symbiotic spatial structure that benefits both. This last
observation is our main finding since neither cooperation nor punishment alone can survive the defector
strategy in this parameter region and the specificity of the symbiotic spatial configuration shows that lat-
tice topology plays a central role in sustaining cooperation. Results were obtained by means of Monte
Carlo simulations on a square lattice and subsequently confirmed by a pairwise comparison of different
strategies’ payoffs in diverse group compositions, leading to a phase diagram of the possible states.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most intriguing questions in evolutionary game the-
ory is the emergence and maintenance of cooperation in an envi-
ronment with limited resources and selfish individuals (Smith,
1982; Nowak, 2006a; Perc et al., 2017). However, cooperation, in
its broadest definition, is a phenomenon both frequent and extre-
mely difficult to explain in terms of a mathematical model
(Pennisi, 2005). Classical game theory predicts that unconditional
betrayal should be the most rational choice in conflict situations
(Szabó and Fáth, 2007; Nowak and Sigmund, 2005). Nevertheless,
cooperation is commonplace not only among individuals of the
same family, flock, or species but also in inter-species interactions
(Nowak, 2006a; Wilson, 1971; Nowak and Highfield, 2012), as in
symbiosis or obligate mutualism. This phenomenon is very com-
mon in nature, such as in bacteria (Hosokawa et al., 2016;
Yurtsev et al., 2016), animal gut microbiome (Lewin-Epstein and
Hadany, 2020) and even regarding cells and mitochondria (Henze
and Martin, 2003). A memorable example of this situation happens
with the acacia tree and ants of the species Pseudomyrmex ferrug-
inea: the former depends upon the ants for the protection of its
fruits against herbivores, whereas the latter benefit by acquiring
food and shelter (Janzen, 1966).

In the context of evolutionary game theory, a usual way to
model the interaction among players is via the public goods game
(PGG), in which groups are formed by agents that have two possi-
ble strategies, to cooperate or to defect (Wardil and Amaral, 2017).
Cooperators bear an individual cost to invest in a collective pool
while defectors do not. The sum of all investments is subsequently
multiplied by a positive constant that represents the synergistic
factor of mutual investment. Then the total amount is equally
divided among all players in the group, independent of their strat-
egy. This dynamic leads to a clear temptation to defect, since one
can gain at the expense of the rest of the group without bearing
an individual loss. The most rational choice for an exploited coop-
erator would be to defect, avoiding to sustain players who do not
contribute. Nevertheless, as all agents end up defecting, this results
in a worse outcome than if all cooperated, a scenario called the Tra-
gedy of the Commons (Szabó and Fáth, 2007).

Among many different applications, a current use of the PGG is
the modeling of climate changes (collective risk dilemma) (Yang
et al., 2020; Curry et al., 2020; Góis et al., 2019; Vicens et al.,
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2018; Couto et al., 2020), where it is possible to understand the
consequences of the maintenance of cooperation and observe
strategies to avoid catastrophic scenarios. Although humans are a
highly cooperative species, historically we see that the exploration
of natural resources, other species, and even of our own species
generates deep impacts on the planet, due to the temptation of
individuals and countries to increase their gain. Several mecha-
nisms were proposed with the aim of explaining cooperation in
competitive systems, such as group selection (Wilson, 1977), spa-
tial reciprocity (Nowak and May, 1992; Wardil and da Silva,
2009; Wardil and da Silva, 2010; Zhao et al., 2020), reputation
(dos Santos et al., 2011; Brandt et al., 2003), direct and indirect
reciprocity (Nowak, 2006b; Trivers, 1971; Axelrod and Hamilton,
1981), willingness (Brandt et al., 2006; Hauert and Szabó, 2005),
mobility (Vainstein et al., 2007), heterogeneity (Perc and
Szolnoki, 2010, Amaral et al., 2016, 2015; Amaral and Javarone,
2020a,b; Fang et al., 2019a; Zhou et al., 2018), among others such
as the introduction of tolerance, multiple strategies and beha-
vioural diversity (Wardil and Amaral, 2017; Szolnoki and Perc,
2016; Xu et al., 2017; Stewart et al., 2016; Hamilton, 1964;
Júnior et al., 2020).

When considering human interactions, a classic mechanism to
promote cooperation is the punishment of defectors (Couto et al.,
2020; Yang and Chen, 2018; Boyd et al., 2003; Chen et al., 2014;
Perc and Szolnoki, 2015; Szolnoki et al., 2011; Helbing et al.,
2010a; Rand et al., 2010; Fang et al., 2019b). Such an approach con-
sists of individuals who prefer to withstand a small loss in order to
harm defectors. Based on these considerations, here we analyse the
effect of altruistic punishers in the lattice PGG which besides con-
tributing to the public pool like a normal cooperator also bear an
extra individual cost in order to punish each nearby defector.

This strategy was proposed in previous works, showing the
effects of heterogeneous punishment (Perc and Szolnoki, 2015)
and the counter-intuitive clustering of punishers with a protective
layer of defectors (Szolnoki and Perc, 2017). It was also shown that,
independent of the cost, high punishment fines always favour pun-
ishers, who fight defectors more efficiently via segregation
(Helbing et al., 2010b). Nevertheless, cooperators are usually seen
as second-order free riders in the parameter regions of the previ-
ous works. This generally leads to defectors being extinct by pun-
ishers allowing cooperators to dominate the system.

Here we explore parameter regions that allow punishers to take
advantage of cooperators when the former cannot survive alone.
This situation is the inverse of the second-order free-rider problem
where only cooperators take advantage of punishers. Specifically,
we focus on values that allow spatial structures of cooperators
and punishers to resist defectors and grow in a symbiotic fashion.
We see that while well-mixed populations are unable to sustain
such an arrangement, the topology of lattices allows specific for-
mations that benefit both altruistic strategies in a scenario where
none would survive alone.
2. Model

We study a variation of the public goods game, in which three
strategies are present: cooperators (C), defectors (D), and punishers
(P). Players are located at the vertices of a square lattice of dimen-
sions L� L, with periodic boundary conditions and interact with
their first four neighbours (von Neumann neighbourhood). Ini-
tially, the strategies are randomly distributed with half of the play-
ers being D, and the remaining half equally divided between C and
P, unless explicitly stated otherwise. The interaction between play-
ers is such that cooperators and punishers contribute equally to a
common pool with one unit (cost, c ¼ 1), whereas defectors do
not. The accumulated total in the group is then multiplied by a syn-
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ergy factor (r > 1) and divided equally among all players in the
group, irrespective of their strategy. When the player is a defector,
a fine (d) is discounted from its final payoff for each punisher pre-
sent in its group. On the other hand, in addition to their invest-
ment, punishers also have to pay a fee (c) for each defector
present in the group, resulting in a decrease in payoff proportional
to the number of defector neighbours. We will use c ¼ d for sim-
plicity. Therefore, the payoff for a given agent is given by:

pC ¼ ðrc=GÞ ðNP þ NCÞ � c ð1aÞ
pP ¼ ðrc=GÞ ðNP þ NCÞ � c � cND ð1bÞ
pD ¼ ðrc=GÞ ðNP þ NCÞ � cNP ; ð1cÞ

where G is the group size, NC stands for the number of cooperative
agents, NP for punishers and ND for defectors in the respective
group, including the central site.

For each player’s payoff, we only take into account the group in
which the player is the central site. That is, differently from the
typical PGG game, we consider that each player only receives gains
from one group. The results are qualitatively the same if we con-
sider that each agent belongs to five groups (data not shown), cor-
roborating the findings of Szolnoki et al. (2009), Szolnoki and Perc
(2011) and Hauert and Szabo (2003).

The dynamics of the system evolves by means of a Monte Carlo
simulation: first, a random site X is chosen along with a random
neighbour Y, and then both payoffs are determined and compared
via an imitation rule. The agent in site X will adopt agent Y’s strat-
egy with a probability given by the Fermi function

WX!Y ¼ 1
1þ exp½�ðpY � pXÞ=K� ; ð2Þ

where K is a noise associated with irrationality during interactions
(Szabó and Fáth, 2007; Szolnoki et al., 2009). A Monte Carlo step
(MCS) is characterized by the above procedure repeated L2 times,
allowing all players to interact in a time step on average. In the sim-
ulations we used K ¼ 0:1;G ¼ 5; L ¼ 100 and tmax ¼ 106 MCS. The
simulation was stopped before tmax if D’s became extinct, since we
are interested in the proportion of altruistic strategies. We used
averages over 100 independent samples to generate the results,
unless otherwise stated.
3. Results

We begin by studying the general effects of the punishment
parameter (c) on a population. It should be noted that if no defec-
tors are present, punishers behave as normal cooperators; there-
fore, after the extinction of D’s, both C’s and P’s are the same
strategy, differing only by their labels, and any further dynamics
will be the result of simple neutral drift (Nowak, 2006a). In other
words, C’s and P’s will randomly fluctuate until one of them
becomes the dominant strategy. Due to this, the sum of the coop-
erator and punisher densities, q ¼ qC þ qP , is more meaningful
than the simple fraction of C’s or P’s in terms of equilibrium states.
We refer to this quantity as the fraction of altruistic strategies
throughout the paper.

The main effect of the punishment factor is presented in Fig. 1,
that shows the average value of q in the stable regime as a function
of r=G. Note that for c ¼ 0 punishers behave as cooperators, and we
recover the classic PGG, in which cooperation is only able to sur-
vive if r=G > 1 for the infinite well-mixed population (Szolnoki
and Perc, 2011).

As expected, for low values of r and c, both cooperators and
punishers become extinct. In our model for c ¼ 0 (that is, punishers
behaving as cooperators), we see a continuous transition near
r=G ’ 0:9, where cooperation begins to flourish. Two different phe-



Fig. 1. Non-monotonic behaviour of the onset of cooperation as c increases. The
graph shows the average final fraction of altruistic strategies, q ¼ qC þ qP , as a
function of r=G for different values of the punishment parameter c. First, low fines
(c < 0:2Þ lead to an increase of the survival range of altruistic strategies. Then,
intermediate fine values (0:2 < c < 0:8) can lead to a decrease in the survival range.
Furthermore, for c > 1 we see altruism reemerging thanks to symbiosis between
cooperators and punishers.

Fig. 2. (a) Final fraction of altruistic strategies, q ¼ qC þ qP , as a function of c. A
small fine (0:1 < c < 0:4) is sufficient to promote the extinction of defectors. For
intermediate fines, highlighted by the grey shaded area, the system is lead to a
bistable equilibrium regime, i.e., the lines represent the average of q, but either
q ¼ 0 or q ¼ 1 for each sample. In the long run there is no coexistence of all three
strategies. Panels (b) and (c) represent the temporal evolution of q. In (b), c ¼ 0:11
and r ¼ 4, representing a region where the average behaviour reflects the sample
behaviour. Note that all samples (light gray) fluctuate around the average value
(black). For panel (c), c ¼ 0:6 and r ¼ 4, typical values for the bistable region.
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nomena are observed as the value of c is increased. First, the crit-
ical value r�, where altruism starts to survive, changes in a nonlin-
ear way. Note that as c increases, starting from zero, the extinction
point first recedes in r=G, since the applied punishers’ fines are able
to act as a deterrent to defectors. In this region (0 < c < 0:2), the
fine value is low enough so that punishers can sustain the expense
and, at the same time, there are on average enough punishers
around defectors to make the sum of the fines surpass the benefits
of defection. However, this trend inverts for c > 0:2, where now
the cost has a significant impact in the punisher payoff. From this
point on, further increases in the fine’s value actually impair pun-
ishers survivability, which in turn leads to a larger r� necessary for
the survival of altruism (P and/or C). This effect is consistent until
c � 0:8, at which point altruistic strategies start to flourish again at
lower values of r�. This scenario suggests that punishment plays a
nontrivial role on altruistic behaviour. The second observed effect
regards the qualitative change in the nature of transitions. We
can observe that for small c values, the transition is continuous
and smooth. Nevertheless, as c increases, the transition becomes
steeper and the fluctuations increase drastically as the system
switches to bistability, a behaviour that suggests a shift from a
second-order-like phase transition to a first-order-like one. This
is illustrated in Fig. 2, where the effects of continuously varying c
are presented for the combined fraction of punishers and coopera-
tors for different values of r. For relatively low punishments,
0:1 < c < 0:2, we see a sharp increase in q, which depending on
the values of r, can lead to altruistic dominance. Nevertheless, an
increase in the punishment fine can also be detrimental to the
altruistic strategies, as seen in the shaded region of the graph, cor-
responding to 0:4 < c < 1. Since the fine applied to defectors has
the same value as the endowment paid by punishers, there is inevi-
tably a turning point where said costs become too large and the
fraction of punishers (together with cooperators) starts to decrease
again as we increase c.

We present the temporal evolution of several samples in Fig. 2
(b) for c ¼ 0:11; r ¼ 4, representative values of the region in which
the asymptotic value of q fluctuates close to its average i.e. the sys-
tem reaches a dynamic equilibrium. An important thing to note is
that the model presents bistable equilibria in the shaded region of
Fig. 2(a), 0:4 < c < 1, In Fig. 2(c) we present the temporal evolution
for c ¼ 0:6; r ¼ 4, where each sample evolves either to q ¼ 0 or
3

q ¼ 1, and the average q represents the fraction of samples that
evolve to the fully cooperative state. Finally, for very high fine val-
ues (c > 1) we see that altruistic strategies dominate the system
again. We explain the mechanisms underlying this change in beha-
viour in the following section.

3.1. Phase diagram

We summarize the general effects of varying the main model
parameters (r and c) in the phase diagrams displayed in Fig. 3. In
Fig. 3(a) we present the final fraction of punishers in a specially
prepared scenario composed only of punishers and defectors ini-
tially distributed equally (cooperators are absent). The first thing
to notice is that while high r can lead to punishers dominating,
they can only survive with low r (r=G < 0:9) for c < 1:0. In this
V-shaped region, the dynamics of the system is slightly dependent
on r and c but the outcome is the extinction of defectors except for
the two transition regions: for the first one, with low gamma val-
ues there may be coexistence, and for the second, bistability. Pun-
ishers are able to survive since they mitigate the detrimental effect
of the applied fines by forming stable clusters that divide the cost
among the members. Near the first transition region, punishers and
defectors coexist even for r as low as r=G � 0:7. Close to the second
transition region (0:2 < c < 1:0), defectors invade all small clusters
of punishers present in the initial configuration and can drive pun-
ishers to extinction, unless at least one of the remaining clusters
reaches a critical size, which then expands until it dominates the
entire population.

At high c values, altruism inevitably became unsustainable,
since the punisher’s payoff becomes too small due to the high
applied fines, and the clusters are unable to sustain themselves.



Fig. 3. Parameter diagram, r=G� c for the noise parameter K ¼ 0:1; the color gradient represents the fraction of punishers in panels (a) and (b). In panel (a) the system is
composed of only punishers and defectors (cooperators are absent). Here, Ds dominate the population for low r values in general. The major exception is the V-shaped region
(0 < c < 1), where punishers are able to form compact clusters that survive defectors by sharing the fine cost among themselves (see main text for details). As c increases, this
becomes harder and demands a higher r for the survival of Ps. Notice that on the vertical axis, where c ¼ 0; Ps are equivalent to cooperators. Panel (b) shows the situation in
which all three strategies are present. The circle and square symbols correspond respectively to the parameters used in Fig. 2(b) and (c) for the stable and bi-stable regions.
The striking difference between panels (a) and (b) regards the region of high c: while neither cooperators nor punishers alone are able to survive for r=G < 0:9 and c > 1,
together they suppress defectors. This is the symbiosis region, where both Cs and Ps arrange themselves in specific spatial patterns to survive. The continuous black lines in
the first two panels represent the transition lines obtained from the comparison of payoffs of two focal sites with different strategies (see Appendix). As the noise parameter K
decreases, the simulation transitions approach the analytical results. Panel (c) presents the limits of the symbiosis domain, i.e., the region where the difference between the
punisher fractions of panels (b) and (a), qdiff , is positive.
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Without cooperators, punishers are quickly eliminated for high c
(c > 1:0). Note that in the case of a population composed only of
defectors and cooperators (c ¼ 0), cooperation also becomes
extinct for low r (r=G < 0:9, see Fig. 1). In other words, the region
of high c and low r is forbidden both for cooperators and punishers
when they exist by themselves in a sea of defectors.

In Fig. 3(b), we show the fraction of punishers for the initial con-
figurations where all three strategies are present. Here, the regions
of the parameter space dominated by defectors show a distinct
behaviour as r and c increase. While an increase in r always leads
to the eventual extinction of defectors, this is not the case for an
increase in c. For low values of r (r=G < 0:6), the punishment cost
has no real effect on the final population outcome since defectors
always dominate. However, as we increase r, we see that there
are specific ranges of c that can lead to the emergence of altruism
in a nontrivial way.

Comparing Figs. 3(a) and (b), we note that the low-c (c < 0:2Þ
region is essentially the same in both figures. The reason is that
after the initial formation of clusters of cooperators and punishers,
the former are spontaneously segregated to the boundaries, where
they are exploited by defectors (they cannot survive alone for
r=G < 0:9). At intermediate c (0:2 < c < 1:0), clusters of coopera-
tors and punishers with a critical size can expand and dominate
the system. After that, one of them will prevail due to neutral drift
(usually punishers, since they compose a higher fraction of the
population at the onset of defector extinction). As c increases, it
gets more difficult for punishers to thrive by themselves, therefore
cooperators persist for a longer time.

This situation continues until c reaches high values. Naively, we
could expect that once c > 1:0, punishers would not be able to
expand by themselves anymore, vanishing together with coopera-
tors. However, looking at the phase diagram, Fig. 3(b), we note that
this is not the case. In reality, we observe that in this region both
cooperators and punishers coexist. We designate this the symbio-
sis region, a combination of parameters that allow both strategies
to thrive where none would be able to do so by themselves.

Finally in Fig. 3(c), we present the difference, when positive,
between the fraction of punishers in the presence of cooperators,
Fig. 3(b), and when alone, Fig. 3(a) to highlight the symbiosis
region. By doing so, we can clearly visualise the parameter region
that allows the existence of punishers when cooperators are pre-
sent, as opposed to the scenario with only punishers and defectors.
We observe that the symbiosis region emerges as soon as c > 0:5,
4

but only for a very small range of r values. For c > 1 the symbiosis
region becomes wider (0:6 < r=G < 0:95) and altruistic strategies
are able to survive together.

3.2. Emergence of symbiosis

Now, we focus on the region where the symbiosis effect occurs,
see Fig. 3(c). To better understand the underlying mechanism
responsible for this effect, we analyse the payoffs of different
strategies under diverse group configurations to characterize tran-
sitions, which could occur when these payoffs become equal
(Vainstein and Arenzon, 2014). To this end, we compare two neigh-
bouring focal players of different strategies, each with its own
G ¼ 5 agent group, to determine the parameter values that lead
to the dominance of one strategy over another. For instance, if
we wish to compare a punisher player’s payoff with that of a defec-
tor, first we use Eqs. (1) to obtain

pP ¼ ðrc=GÞ ðNðPÞ
P þ NðPÞ

C Þ � c � cNðPÞ
D ð3aÞ

pD ¼ ðrc=GÞ ðNðDÞ
P þ NðDÞ

C Þ � cNðDÞ
P ; ð3bÞ

where NðiÞ
j represents the number of sites with strategy j in central

agent ðiÞ’s group, including itself (e.g., NðDÞ
P is the number of punish-

ers in the group where the defector is the central site). Then we
equate both payoffs in Eqs. (3) to obtain all possible dominance
transitions between strategies. By doing so, we can obtain the pre-
cise value of r that makes both payoffs equal, let us call it rPD for the
comparison between a punisher and a defector. To simplify the

notation we write rPD � rPDðc;NðPÞ
C þ NðPÞ

P ;NðDÞ
C ;NðDÞ

P Þ, given by

rPD ¼ G
c
c½NðDÞ

P þ ðNðPÞ
C þ NðPÞ

P Þ � G� � c

NðDÞ
P þ NðDÞ

C � ðNðPÞ
C þ NðPÞ

P Þ
ð4Þ

which is a function of c for each microscopic configuration encoded

in the NðiÞ
j ’s, with NðDÞ

P þ NðDÞ
C – NðPÞ

C þ NðPÞ
P . It should be noted that

there are as many transition values as there are configurations with

the simultaneous constraints NðDÞ
P P 1;NðPÞ

C þ NðPÞ
P 6 G� 1, and

NðiÞ
C þ NðiÞ

D þ NðiÞ
P ¼ G for i 2 fP;Dg; however, not all of these possible

transition values obtained in this way are relevant for the evolution
of the system (see Appendix). The same procedure is repeated with
a focal cooperative site and its defector neighbour. In this case, we

obtain the function rCD � rCDðc;NðCÞ
C þ NðCÞ

P ;NðDÞ
C ;NðDÞ

P Þ, given by
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rCD ¼ G
c

cNðDÞ
P � c

NðDÞ
P þ NðDÞ

C � ðNðCÞ
C þ NðCÞ

P Þ
; ð5Þ

with NðDÞ
P þ NðDÞ

C – NðCÞ
C þ NðCÞ

P and the constraints

NðDÞ
C P 1;NðCÞ

C þ NðCÞ
P 6 G� 1, and NðiÞ

C þ NðiÞ
D þ NðiÞ

P ¼ G for i 2 fC;Dg.
However, the transition values arising from this condition coincide
with the constant and decreasing lines obtained from Eq. (4). The

exceptions occur when NðDÞ
P þ NðDÞ

C � ðNðCÞ
C þ NðCÞ

P Þ ¼ 0, so that when
we make pC ¼ pD, we arrive at the vertical transition lines

cCD ¼ c

NðDÞ
P

; ð6Þ

where c ¼ 1. Out of these, the only important line is cCD ¼ 1, which

corresponds to NðDÞ
P ¼ 1 (see Appendix). The relevance of this verti-

cal transition line is that for high enough fines (c P 1), a cooperator
can invade a defector that is being currently punished. This high-
lights the importance of the interdependence between cooperators
and punishers in order to defeat a defector. We proceed with our
analysis looking at representative snapshots of the lattice evolution
in the symbiosis region in Fig. 4, where we observe a very interest-
ing phenomenon: cooperators and punishers cluster in specific pat-
terns. Differently from other parameter regions, we see that here C
and P strategies tend to form compact clusters in which cooperators
lie in a thin boundary layer around a bulk composed of punishers.
Note that due to the inherent random nature of the simulations,
such configurations are susceptible to noise, although their general
shapes are frequent and occur for many different cluster sizes. Since
the initial condition is random, there will be some clusters that
combine punishers and cooperators in such a way that they can sur-
vive the initial invasion of defectors. These symbiotic configurations
will grow pushing cooperators to the boundaries and leaving pun-
ishers inside. At the same time, spatial configurations that do not
Fig. 4. Lattice representative snapshots showing the temporal evolution of the
strategies for r ¼ 3:8; c ¼ 1:5 and K ¼ 0:1. Here the initial condition is a random
strategy assignment with half of the sites being defectors (red, light grey), and the
remaining half equally distributed between cooperators (blue, dark grey) and
punishers (green, lightest grey). From left to right and top to bottom, the snapshots
present the Monte Carlo steps t ¼ 0;25;130 and 310. For very early times, the
cooperator and punisher densities drop, as unfavourable configurations are
eliminated. Nevertheless, the symbiotic clusters with a bulk of punishers sur-
rounded by a layer of cooperators survive this initial period and quickly begin to
grow, dominating the entire population. In Flores (2020a) we present a short
animation of the lattice evolution.
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favour symbiosis will be quickly eliminated by defectors. In Flores
(2020a) we present a short animation of the lattice evolution, where
it is possible to see such processes. Since only cooperators and pun-
ishers contribute to the common pool, low r values have a stronger
impact on their payoff than on that of defectors. Consequently, this
symbiotic behaviour disappears for low r, leaving only defectors.

The spatial structures that promote symbiosis can be better
understood by looking at the microscopic interactions when there
is a cluster of punishers surrounded by a thin layer of cooperators
that separate them from defectors. Fig. 5 illustrates this spatial
configuration and all steps necessary for altruistic behaviour to
thrive. The first step is the expansion of the cluster as a cooperator
invades a defector in the sea of defectors. This initial configuration
does not favour the cooperator (for low values of r=G) because,
now, the cooperator has several defectors as neighbours. The sec-
ond step is the invasion of a boundary cooperator by a punisher
from the inner cluster. This step has a high probability of happen-
ing since boundary cooperators are exploited by defectors and
inner punishers are not. At this point, the condition r=G > 0:5 pre-
vents the D from invading the neighbouring P site. Once both
movements occur and the system arrives at a configuration such
as the one shown in the right panel of Fig. 5, the comparison of
payoffs between the cooperator and the defector shows that for
c > 1 the cooperator will be able to invade the defector, according
to Eq. (6). After this invasion succeeds, the system is, again, in a
configuration where all these steps can repeat.

It should be pointed out that the punisher alone cannot expand
due to the high punishment cost associated with invading a sea of
defectors. This is the main mechanism that allows the symbiosis of
cooperators and punishers. We can see that this is a complex
dynamics where cooperators and punishers both play specific roles
regarding cluster growth. We stress that this is a nontrivial sce-
nario that is only possible in a specific range of parameters. There
is a delicate equilibrium between all involved factors, that is, the
punishment fines and cost, the number of neighbours in a given
configuration, the maximum allowed number of neighbours in
the current lattice topology, etc.

Finally, aiming to confirm the presented micro-mechanism
illustrated in Fig. 5, we ran simulations with the population pre-
pared in special initial conditions, as presented in Fig. 6. We con-
sidered two squares with pure strategies (top right: cooperators,
and bottom left: punishers), and two mixed strategies squares with
different configurations (top left and bottom right). In the bottom
right, we have a randommix of both strategies, while in the top left
Fig. 5. Illustrative diagram of the microscopic spatial configuration that character-
izes symbiosis and allows C to invade D with the aid of P. In step 1, a D will be
invaded by C for r=G > 1=3. In step 2, Ps are able to invade Cs located at the borders
in any scenario, due to contact of Cs with Ds. The symbiosis effect happens in step 3
during which the C site would have a lower payoff than any of its D neighbours in
the absence of Ps. However, in the presence of Ps and for high values of punishment,
c > 1, the defector’s payoff is decreased allowing the invasion by C. The condition
r=G > 0:5 (horizontal line in phase diagram, Fig. 3(b)) prevents the D from invading
the neighbouring P in the right panel.



Fig. 6. The presence of both altruistic strategies is fundamental to the outcome of a
cluster dynamics, allowing the symbiosis configuration to occur. Here we show the
evolution of four different types of clusters in a sea of defectors, with
r ¼ 3:8; c ¼ 1:5 and K ¼ 0:1 for t ¼ 0;40;250 and 500. For pure cooperator (blue,
dark grey) or punisher (green, lightest grey) clusters, the defectors (red, light grey)
quickly dominate. Nevertheless, for both mixed strategy clusters, C and P strategies
are able to form spatial structures that are both shielded from defectors and also
allow expansion. In Flores (2020b) we present a short animation of the lattice
evolution.

Fig. 7. Average strategy temporal evolution in the symbiotic parameter region, for
r ¼ 3:8 and c ¼ 1:2. Panel (a) presents the result for the square lattice, while (b)
shows the evolution of the well-mixed population. The symbiotic effect cannot
occur using a random and dynamical spatial structure, and both cooperators and
punishers are dominated by defectors.
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we have a bulk of punishers surrounded by a thin layer of
cooperators.

We first note the expected effect on pure populations for the
given set of parameters, that is, both pure cooperators and pure
punishers quickly disappear. Nevertheless, we can see that the
mixed configurations can survive in the sea of defectors by sticking
together. Not only this but they eventually start to expand, domi-
nating the defectors, a feat that neither altruistic strategy can
achieve by itself. As time progresses, we note that both types of
mixed initial configurations quickly become similar, i.e., a some-
what random distribution of C and P, but with the cooperators
mostly in the exterior of the cluster. In this cluster with both
strategies present, cooperators can isolate punishers from direct
contact with the sea of defectors. This avoids high costs for punish-
ers and, on the other hand, if some defectors start to penetrate the
cluster, they are quickly defeated by the bulk of punishers, which
act as an internal protection. We also present a short animation
of the lattice evolution in Flores (2020b), where it is possible to
see the full evolution of this specially prepared initial state and
how the mechanism works.

We note again that this complex and interesting mechanism is
spontaneous and does not require any external influence on how
cooperators and punishers interact. It is interesting to note how
this emergent phenomenon shares many similarities with cyclic
alliances in which different strategies cyclically dominate most of
the population. This process results in a system that is more robust
to the invasion of foreign strategies (Szabó and Fáth, 2007;
Cazaubiel et al., 2017). Nevertheless, we also note that here the
symbiotic effect is achieved without the need of a cyclic domi-
nance structure.

We extend the analysis by simulating a well-mixed population
by allowing agents to copy any other player in the entire popula-
tion, instead of one of its closest neighbours. Besides this, all play-
ers in their public goods groups are also randomly selected in each
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step. This is done to minimize the effects of the spatial distribution,
since this kind of topology is known to neutralize spatial
reciprocity.

Fig. 7 presents the population evolution comparing the square
lattice with the well-mixed case for the same parameters (r ¼ 3:8
and c ¼ 1:2) in the symbiosis region. While altruistic behaviour
thrives in the square lattice, it becomes quickly extinct in the
well-mixed network. Note that cooperation would also be con-
demned here if there were no punishers. We see that even if the
parameters are identical, the well-mixed setting forbids the symbi-
otic phenomenon from taking place due to the lack of spatial orga-
nization. This, again, strengthens our claim that the symbiosis seen
in our model has a deep relation to the spatial distribution of the
strategies.
4. Summary and conclusion

Cooperation is a major component for the integrity of many
societies, animal groups, and even inter-species relations. Given
the difficulties in maintaining such phenomena, several mecha-
nisms are employed to sustain the altruistic behaviour, such as
the punishment of egotistic individuals. In the current work, we
explored the effectiveness of punishment in the public goods
game. To do so, altruistic punishers were introduced, whose only
condition for punishment to occur is the spatial proximity between
the punisher and one or more defectors. In the classical scenario,
without punishment, the survival of cooperation requires an incen-
tive (r) large enough to allow cooperator clusters to avoid invasion
by defectors. However, for lower values of r, cooperators are unable
to stand alone, needing an alternative way to fight exploiters. With
the introduction of punishers, altruistic strategies can survive for a
greater range of parameters. For low cost punishments, clusters of
punishers are essential for survival, because different agents share
the costs of punishing external defectors while benefiting from
spatial reciprocity of internal altruistic behaviour. This is in accor-
dance with similar models (Brandt et al., 2003; Helbing et al.,
2010b) where the grouping of punishers was found for appropriate
ranges of parameters.

Nevertheless, an even more interesting phenomenon arises
when the punishment value becomes too high for punishers to
thrive alone. In this parameter region, that we designate the sym-
biosis region, the fine and r values allow specific spatial configura-
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tions to emerge between cooperators and punishers that permit
both to survive, whereas none would be able to do so by them-
selves. Such symbiosis achieves stability through spatial patterns
that segregate cooperators to borders of the clusters, leaving pun-
ishers inside. This allows punishers to survive the costs of high fine
values, and at the same time quickly expel any defector that
invades the cluster. In this manner, cluster growth by a mutually
beneficial interaction between cooperators and punishers is possi-
ble. Analyzing the payoff distribution and lattice snapshots we
were able to understand and validate the microscopic mechanism
behind this symbiotic formation finding a high sensitivity to the
lattice reciprocity.

The dependence between a cooperator and a punishing strategy
to survive was previously found in Chen et al. (2014). Differently
from our model, they first considered a probabilistic punishment
strategy which did not lead to cluster segregation. In other words,
both altruistic strategies were randomly distributed at all times.
Furthermore, in the case of non-probabilistic punishers, an altruis-
tic spatial segregation pattern (Fig. 4 from Chen et al. (2014)) sim-
ilar to ours emerges; however, it is unstable and vanishes. We
emphasize that despite the fact that our proposed model does
not rely on complex dynamics, such as those of Nakamaru and
Iwasa (2006), on extended groups as in Brandt et al. (2003) or on
diverse punishing rules as in Brandt et al. (2003), Yang and Chen
(2018), Chen et al. (2014), Perc and Szolnoki (2015), Szolnoki and
Perc (2017) and Nakamaru and Iwasa (2006), it allows a robust sur-
vival of both altruistic strategies. Moreover, cooperators are second
order free-riders only for a range of parameter values (the V-
shaped region presented earlier) since they can only survive if pun-
ishers are present to deter defectors as in Chen et al. (2014),
Szolnoki and Perc (2017) and Helbing et al. (2010b). On the other
hand, this free-riding situation ceases to exist in the symbiosis
region of our work, since now punishers and cooperators need
one another to survive.

The emergence and maintenance of cooperation is a fascinating
subject in both animal evolution and human societies. Specifically,
the emergence of symbiotic relations is one of the strongest forms
of mutual cooperation in nature, and robust mathematical frame-
works to model such associations are a welcome addition to the lit-
erature. This work opens future venues for studying how symbiosis
can spontaneously emerge, and how the connection network can
be used to generate configurations with appropriated spatial
reciprocity allowing cooperation to survive in competitive
scenarios.
Fig. 8. Not all transition lines rPDðc;NðPÞ
C þ NðPÞ

P ;NðDÞ
C ;NðDÞ

P Þ, Eq. (4), are decisive for the
system’s evolution as explained in the text. Here NðiÞ

j represents the number of sites
with strategy j in central agent ðiÞ’s group, including itself. All non-vertical lines that
obey the constraints NðDÞ

C P 1;NðCÞ
C þ NðCÞ

P 6 4, and NðiÞ
C þ NðiÞ

D þ NðiÞ
P ¼ 5 for i 2 fC;Dg

are shown. Likewise, we also present the vertical lines from Eq. (6). Punishers can
outcompete defectors by themselves and thrive in the V-shaped region delimited by
lines rPDðc;4;0;3Þ=G ¼ 1� 2c (yellow) and rPDðc;3;0;1Þ=G ¼ ð1þ cÞ=2 (red). The
first line corresponds to the change in dominance of a P � D pair on the edge of an
altruist cluster; the second corresponds to the same pair in a corner. In the
symbiosis region, delimited by the lines rPDðc;4;1;1Þ=G ¼ 0:5 (blue) and the vertical
solid line cCD ¼ 1, cooperators and punishers can only survive in the presence of one
another. Regions above non-vertical lines and to the right of vertical lines favour
altruism. We have added a green transparency as a guide to the eye: whenever a
line is crossed in the direction that favours punishers or cooperators, the shade
becomes darker.
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Appendix A

Here we analyse the relevance of the solid line transitions pre-
sent in Fig. 3. Fig. 8 shows possible transition lines arising from all
conditions in Eq. (4) that consider a punisher and a defector as cen-
tral focal sites, as well as those from Eq. (6) that results from the
comparison of the payoffs of a cooperator and a defector as central
sites with the constraints given in the main text. These lines repre-
sent the boundaries between different regions of the system’s
behaviour under deterministic evolution, i.e., when K ! 0 in Eq.
(2). When K – 0, there is noise and these lines serve as guides to
the whereabouts of the expected transitions. All ðc; rÞ values such

that r > rPDðc;NðPÞ
C þ NðPÞ

P ;NðDÞ
C ;NðDÞ

P Þ, for a given set of NðiÞ
j s, favour

the punisher in the P � D pair. Here, NðiÞ
j represents the number

of sites with strategy j in central agent ðiÞ’s group, including itself.
Likewise, regions to the right of each vertical line favour the coop-
erator in the C � D pair. We have added a green transparency as a
guide to the eye in Fig. 8: whenever a line is crossed in the direc-
tion that favours punishers or cooperators, the shade becomes
darker.

There are two main regions of interest to be analysed in Fig. 8.
The first one is delimited below by the solid lines
rPDðc;4;0;3Þ=G ¼ 1� 2c (yellow line) and rPDðc;3; 0;1Þ=G ¼ ð1þ cÞ=2
(red line), and corresponds to the V-shaped region of Fig. 3(a). These
lines exist whether or not cooperators are present and delimit the
region in which defectors cannot invade compact altruistic clusters
composed of Ps or both Cs and Ps. The microscopic configurations
corresponding to these boundaries are shown in Fig. 9. Fig. 9(a)
shows a P � D pair as focal sites and considers a possible invasion
of an altruistic cluster from a cluster’s border by a defector: if



Fig. 9. Sites with the letter P or D indicate punishers or defectors, respectively. Sites
with letters C and P indicate either a cooperator or a punisher interchangeably.
Microscopic configurations of the central pair P � D and their neighbourhoods that
govern transitions rPDðc;4;0;3Þ=G ¼ 1� 2c and rPDðc;3;0;1Þ=G ¼ ð1þ cÞ=2 are
shown in (a) and (b), respectively. Different outcomes occur depending on whether
(a) the central D can invade an altruistic cluster from a border by outcompeting the
central P and ðbÞ whether the central D can invade the cluster from a corner. For
values of ðc; rÞ in the region above both transition lines rPDðc;4;0;3Þ and
rPDðc;3;0;1Þ, that delimit the V-shaped region of Fig. 3, neither process will have
a high probability of occurring and the punishers will be favoured. Therefore, in this
parameter region, altruistic compact clusters are stable against invasion by
defectors.
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r > rPDðc;4;0;3Þ, the invasion would not happen in the determinis-
tic case and would have a low probability of succeeding in the pres-
ence of noise. In the same manner, Fig. 9(b) indicates a possible
invasion of an altruistic cluster from a corner when
r < rPDðc;3;0;1Þ. In this way, we conclude that for parameter values
outside of this V-shaped region, compact altruistic clusters are
unstable.

However, this scenario changes in the second region of interest,
which we denominated the symbiosis region, see Fig. 3(c). It only
arises in the presence of both cooperators and punishers even
though the above conditions for the stability of altruistic clusters
are not met for c > 1 and r < rPDðc;3;0;1Þ. In the deterministic
case, in the region to the right of the vertical line cCD ¼ 1 and above
the solid line rPDðc;4;1;1Þ=G � 0:5 (blue line) in Fig. 8, altruistic
clusters once again become stable, grow and dominate the popula-
tion. In Fig. 10(a) and (b) we show microscopic configurations of a
focal C � D pair and their neighbourhoods that present a change in
behaviour when the vertical line cCD ¼ 1 is crossed. For c < 1, the
central defector has a higher chance of invading the central coop-
erator, whereas for c > 1, it is the cooperator who is more likely to
invade the defector. This configuration is shown in Fig. 10(b) and
Fig. 5 shows how it can be reached. These two configurations
Fig. 10. Sites with the letter C; P or D indicate cooperators, punishers or defectors,
respectively. Sites with letters C and P indicate either a cooperator or a punisher
interchangeably. (a) and (b) show microscopic configurations of the central C � D
pair and their neighbourhoods responsible for the transition cCD ¼ 1, for NðDÞ

P ¼ 1.
The constraints NðDÞ

C þ NðDÞ
P ¼ NðCÞ

C þ NðCÞ
P that result in the vertical boundaries equal

(a) 3 and (b) 2. In (c), we present a microscopic configuration of a central P � D pair
and their neighbours that govern the transition rPDðc;4;1;1Þ=G � 0:5. When both
c > 1 and r > rPDðc;4;1;1Þ, altruistic clusters are stable and can grow due to the
interdependence of cooperators and punishers which characterizes the symbiosis
region.
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indicate that an altruistic cluster can both (a) prevent a defector
invasion and (b) grow into the sea of defectors for c > 1. The two

configurations occur when NðDÞ
P ¼ 1 and the constraint

NðCÞ
C þ NðCÞ

P ¼ NðDÞ
C þ NðDÞ

P is equal to (a) 3 and (b) 2, giving rise to
the solid vertical line, c ¼ 1. The other condition that delimits the
symbiosis region is that the P in the P � D pair shown in Fig. 10
(c) must have the advantage. For r=G > rPDðc;4;1;1Þ=G � 0:5, this
is indeed the case and an altruistic cluster cannot again be invaded
by a defector and grows to dominate the whole population. We
emphasize that with noise, or K – 0, these transitions become dif-
fuse and the above mentioned lines serve only as guides. It was by
means of these analyses that we were able to identify and better
understand which configurations were important in the transition
regions. Together with lattice snapshots and the parameter dia-
gram (Fig. 3) we are able to understand the microscopic mecha-
nism that leads to the growth and stability of the symbiotic
structure composed of punishers and cooperators.
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