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A B S T R A C T

In the context of Evolutionary Game Theory, one of the most noteworthy mechanisms to support cooperation
is spatial reciprocity, usually accomplished by distributing players in a spatial structure allowing cooperators
to cluster together and avoid exploitation. This raises an important question: how is the survival of cooperation
affected by different topologies? Here, to address this question, we explore the Focal Public Goods (FPGG) and
classic Public Goods Games (PGG), and the Prisoner’s Dilemma (PD) on several regular lattices: honeycomb,
square (with von Neumann and Moore neighborhoods), kagome, triangular, cubic, and 4D hypercubic lattices
using both analytical methods and agent-based Monte Carlo simulations. We found that for both Public Goods
Games, a consistent trend appears on all two-dimensional lattices: as the number of first neighbors increases,
cooperation is enhanced. Besides this, clustered topologies, i.e., those that allow two connected players to
share neighbors, are the most beneficial to cooperation for the FPGG. The same is not always true for the
classic PGG, where having shared neighbors between connected players may or may not benefit cooperation.
We also provide a reinterpretation of the classic PGG as a focal game by representing the lattice structure of
this category of games as a single interaction game with longer-ranged, weighted neighborhoods, an approach
valid for any regular lattice topology. Finally, we show that depending on the payoff parametrization of the
PD, there can be an equivalency between the PD and the FPGG; when the mapping between the two games
is imperfect, the definition of an effective synergy parameter can still be useful to show their similarities.
1. Introduction

The emergence and maintenance of cooperative behavior in a com-
petitive environment are one of the most long-standing issues in bio-
logical and social sciences [1–5]. After all, why would self-interested
agents pay a cost to provide benefits to others? And yet, cooperation
permeates nature, being much more common than could be antici-
pated based on a naive application of the Darwinian premise that
only the fittest individuals survive. Humans, social insects (such as
bees and ants), flocks of birds, and even members of different species
can mutually cooperate and share benefits [2,6,7]. It is no surprise,
therefore, that much research has been dedicated to discovering pos-
sible mechanisms that support cooperation [3–6,8–10]. Evolutionary
Game Theory (EGT) is one of the most useful mathematical frameworks
for dealing with such questions [11–14]. Its applications range from
economics [15] to epidemiology [16–18], rumor spreading [19], the
evolution of moral behavior [20] and even quantum mechanics [21].
By resorting to games such as the famous Prisoner’s Dilemma and the
Public Goods Game, the EGT framework can mathematically model
situations where the best outcome for the whole population occurs
when everybody cooperates, while at the same time the best choice
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for the individual is to betray their peers, obtaining all the benefits
without having to pay a cost. This encapsulates the dilemma between
individual and collective gains and can be modeled in an evolutionary
setting where more efficient strategies leave more offspring. Classic
examples reviewed in [14] include kin selection [22], direct and indi-
rect reciprocity [23,24], network reciprocity [25–32], as well as group
selection [33,34]. Dilution [35,36] diffusion and mobility have also
been studied prominently [37,38], as were various coevolutionary mod-
els [10] involving network topology, noise [39–41], heterogeneity [42–
50], and aspiration [51–60].

Among the mechanisms that promote cooperation, perhaps one of
the most well-studied is the reciprocity that emerges from the spatial
distribution of players. In a novel approach at the time, Nowak and
May [25] modeled spatially distributed populations where players copy
the fittest strategy nearby. By doing so, cooperators can form compact
clusters supporting themselves in a sea of defectors. The effect of group
size has already been studied [61–63] and it was shown that an increase
in the group size, for a fixed regular lattice, is beneficial to cooperation.
This benefit ceases at a certain threshold where the gain from clustering
to avoid exploitation is overcome by the length of interactions, reaching
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a well-mixed scenario. Also, the effect of noise has been studied in
regular lattices [64] showing the importance of the clustering coef-
ficient. Nevertheless, structured populations are not always favorable
for the maintenance of cooperation [65,66], and the specific type of
spatial topology can drastically alter the population dynamics [67].
For example, while the snowdrift game presents trivial dynamics in
square lattices, the triangular lattice creates topological frustration akin
to glassy systems in condensed matter, leading to long-range strategy
ordering, a phenomenon absent in most lattices [68].

Aiming to better understand the effects of diverse topologies on
cooperation, here we comprehensively explore both the focal Public
Goods (FPGG) and classic Public Goods (PGG) Games, and the Pris-
oner’s Dilemma (PD) in some of the most common two-dimensional
regular topologies: the square, triangular, kagome and honeycomb
lattices. For the sake of completeness, we also compare the results
with the cubic and 4𝐷 hypercubic lattices. While the square lattice
as been consistently explored, the lack of systematic study of different
egular lattices in the literature for a given game and set of parameters
s evident. This work proposes to fill this gap and put all systems
nder consideration under well-established analyzes. We also deem it
mportant to note that complex networks such as the small-world [69]
nd scale-free networks [70] have been thoroughly studied in the
ramework of evolutionary game theory. However, the scope of the
urrent paper is to focus mainly on regular lattices and to compare the
ffects of those in some of the most usual games.

We hope that this work will provide a robust basis for comparing
he effect of different topologies in diverse games, creating a unified
ramework to compare different lattices and their effect on these games.

e also include an analytical reinterpretation of the PGG, showing that
e can represent a lattice structure of such category of games as a

ingle interaction game with longer-ranged, weighted interactions, an
pproach valid for any regular lattice topology.

. Models

We will study three different models: the Prisoner’s Dilemma (PD),
he Focal Public Goods Game (FPGG), and the classic Public Goods
ame (PGG). For the FPGG, the focal player and its nearest neighbors

orm a group of size 𝐺. Each player can choose between cooperating
𝐶) by contributing with an investment 𝑐 to a public pool or defecting

(𝐷) without contributing. The sum of all contributions is multiplied
by a synergistic factor 𝑟 > 1 and then equally distributed among all
players in the group, including defectors. We stress that the group size
𝐺, the number of nearest neighbors, and the total population size 𝑁 ,
will depend on the lattice topology (see Fig. 1). As usual for the FPGG,
the agent’s payoff consists only of the earnings from the group in which
it is the central site, and is given by

𝛱𝐷 = 𝑟𝑐
𝐺
𝑁𝐶 , (1)

𝛱𝐶 = 𝑟𝑐
𝐺
(1 +𝑁𝐶 ) − 𝑐, (2)

here 𝛱𝐶 (𝛱𝐷) is a cooperator’s (defector’s) payoff, and 𝑁𝐶 is the
number of cooperative players around the player in question. For the
classic PGG, on the other hand, a player’s total payoff is equal to the
sum of earnings from all 𝐺 groups to which the player belongs.

The population dynamics is implemented via a Monte Carlo simu-
lation for all games. Each Monte Carlo trial movement is comprised
of the following steps: first, a random player 𝑖 is selected and its
payoff is calculated. Then, this process is repeated with a randomly
selected neighbor 𝑗. Next, player 𝑖 tries to imitate player 𝑗’s strategy
with probability:

𝑊𝑖→𝑗 =
1

1 + 𝑒−(𝛱𝑗−𝛱𝑖)∕𝐾
, (3)

here 𝐾 is the noise associated with irrationality during interac-
ions [9,71]. The previous process is repeated 𝑁 times, characterizing
2

ne Monte Carlo step (MCS). This is done to guarantee that, on average,
ach player will have a chance to change their strategy at each MCS.
e present results for 𝑡𝑚𝑎𝑥 = 105 MCS. We use periodic boundary

onditions for all regular lattices presented. Initially, we randomly
istribute the strategies with half of the players being defectors (𝐷) and

the other half, cooperators (𝐶). In the simulations, we used 𝐾 = 0.1 and
veraged over 100 independent samples to generate the results, unless
therwise stated. The interested reader can find the codes related to the
imulations of all regular lattices at [72].

It is important to notice the role of the investment cost 𝑐 in Eqs. (1)
nd (2). Since all terms in both payoffs are proportional to 𝑐, a change
n its value can also be viewed as a rescaling of the noise 𝐾 (𝐾 ′ = 𝐾∕𝑐)
n Eq. (3). Therefore, a scenario with a high contribution value is
quivalent to a low noise case and vice-versa. The usual approach of
etting the agent’s contribution cost to unity (𝑐 = 1), which we have
ollowed, is equivalent to using the rescaled noise 𝐾 ′ making the dy-
amics independent of the particular choice of 𝑐. This observation will
e crucial for the comparison of the PD and the FPGG in Section 3.3.

While both PGG and PD games can encapsulate the social dilemma
f collaborating in a selfish environment, they have small differences,
he central one being that the PD is a 1 × 1 interaction game, i.e., the
ames are played between only two players at a time. On the other
and, the PGG is more suitable for model situations where each indi-
idual will play at the same time against a group of different agents.
owever, in a spatial setting, the distinction between them becomes

ubtler, and in some cases, one can even be mapped onto the other [73].
In the PD, two players can either cooperate (𝐶) or defect (𝐷): mutual

ooperation yields a payoff 𝑅 (reward), and mutual defection yields
(punishment) for both players. If players have different strategies,

he defector receives 𝑇 (temptation) while the cooperator receives a
mall payoff 𝑆 (sucker). For the game to classify as a PD [9,10,25], the
ayoffs should obey 2𝑅 > 𝑇 + 𝑆 and the hierarchy 𝑇 > 𝑅 > 𝑃 > 𝑆. In
lassical game theory, defection is the Nash equilibrium and, therefore,
he rational choice. The dynamics of the PD are the same as that for the
PGG: two randomly chosen neighboring sites play the game with all
heir first neighbors and themselves to obtain a payoff composed of the
um of the results from all games. The transition probabilities between
trategies also follow Eq. (3). A commonly used parametrization is
= 𝛽, 𝑅 = 𝛽 − 𝛾, 𝑃 = 0 and 𝑆 = −𝛾 for the PD, which we chose

o that we can compare the PD and the FPGG games, S done in detail
n Section 3.3.

.1. Topologies

We present in Fig. 1 an illustrative diagram of all the
wo-dimensional structured neighborhoods used in our simulations (the
𝐷 cubic and 4𝐷 hypercubic lattices are not shown), where each player
s located at a vertex of a graph and the edges denote a given player’s
onnections. Each lattice under consideration has a specific primitive
ell, as pointed out in Ref. [74]. We denote by 𝐿 the linear size of the
attice and the total population size by 𝑁 . We will use the following
attices: honeycomb (𝐺 = 4, 𝑁 = 2 × 𝐿2 = 2 × 1002), kagome (𝐺 = 5,
= 3 × 𝐿2 = 3 × 1002), triangular (𝐺 = 7, 𝑁 = 𝐿2 = 1002), cubic with

on Neumann neighborhood (𝐺 = 7, 𝑁 = 𝐿3 = 203), 4𝐷 hypercubic
ith von Neumann neighborhood (𝐺 = 9, 𝑁 = 𝐿4 = 104), and square

attice with both the von Neumann (𝐺 = 5, 𝑁 = 𝐿2 = 1002) and the
oore (𝐺 = 9, 𝑁 = 𝐿2 = 1002) neighborhoods. While the square lattice

s a defined topology, the von Neumann and the Moore neighborhoods
re different definitions of interacting neighbors in a given topology. In
he current work, we use both types of neighborhoods when studying
he square lattice. From now on, when we refer to the von Neumann
nd Moore neighborhoods, we are considering only the case of the
quare lattice.

It is important to emphasize that neighboring sites share a different
umber of neighbors (closed loops inside the group) depending on
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Fig. 1. Illustrations of segments of (a) honeycomb, 𝐺 = 4, (b) square with von Neumann neighborhood, 𝐺 = 5, (c) kagome, 𝐺 = 5, (d) triangular, 𝐺 = 7, and (e) square with Moore
neighborhood, 𝐺 = 9, lattices. The vertices represent the players and the edges are the connections between them. We highlight all first neighbors that form the group in which
the central player is the focal site for each topology, i.e., all vertices directly linked to the focal site. Simulations on cubic and 4𝐷 hypercubic lattices were also performed.
the lattice topology considered, therefore possessing a varying clus-
tering coefficient [64,69]. Some topologies, such as the square and
kagome lattices, have the same number of neighbors (𝐺 = 5) but
a different number of shared neighbors. The latter has closed loops
inside a given group while the former does not, see Fig. 1. Specifically,
there are no shared neighbors between two connected players for
the honeycomb, square, cubic, and 4𝐷 hypercubic lattices with von
Neumann neighborhoods. On the kagome lattice, there is one; on the
triangular lattice there are two; and on the square lattice with the
Moore neighborhood, there are either two or four shared neighbors,
depending on the connection direction.

3. Results

3.1. Focal Public Goods Game

Random neighborhood
In the well-mixed approximation, each player interacts with all

other players in the population [9]. By doing so, all sites become
equivalent and spatial effects are suppressed, once every player has the
whole population as its neighborhood. This results in the extinction of
cooperation for all parameter regions in all studied systems.

A different approach adopted here that mimics the well-mixed
scenario is to maintain each player’s group size equal to 𝐺 and to,
at each time step, randomly select all other 𝐺 − 1 neighbors from
the entire population. Note that for this case, the interacting sites
may or may not participate in each other’s group. This constant ran-
domization diminishes the effects of spatial reciprocity and mimics a
fully connected topology while preserving the dependence on 𝐺. As
expected, when spatial reciprocity is suppressed by the constant mixing
of interactions, cooperators are not able to establish compact clusters
to support themselves. In this situation, there can only be full defection
or full cooperation in the population, depending on 𝑟. Without spatial
organization, both strategies are unable to co-exist. In this setting,
cooperation only survives for 𝑟 > 𝐺 for both the FPGG and the classic
PGG (data not shown). For these two games, above the threshold value,
a situation known as weak altruism [75,76] settles in: a cooperator
always receives a positive return for their initial investment even when
exploited by all other players and, therefore, cooperation thrives.

For the FPGG we can understand this result by analyzing Eqs. (1)
and (2). A cooperator has a higher payoff than a defector when 𝛱𝐶 >
𝛱𝐷, giving the transition values

𝑟∗ = 𝐺
1 +𝑁 (𝐶)

𝐶 −𝑁 (𝐷)
𝐶

= 𝐺
1 + 𝛥𝑁𝐶

.
(4)

in the limit of low noise 𝐾 (i.e., the deterministic approach), where
𝑁 (𝐶)

𝐶 is the number of cooperative players around a cooperator and
𝑁 (𝐷)

𝐶 the number of cooperators around a defector and both are ran-
domly chosen from the whole population with 0 ⩽ 𝑁 (𝑗)

𝐶 ⩽ 𝐺 − 1
for 𝑗 = 𝐶,𝐷. Eq. (4), together with the conditions on 𝑁 (𝐶)

𝐶 and
𝑁 (𝐷), gives rise to a series of transition values responsible for the
3

𝐶

survival of cooperation in different microscopic configurations. Since
the neighborhood is randomly chosen from the entire population, the
probability of having a 𝐶 as a neighbor is the same for both interacting
sites, irrespective of their strategies. Therefore, we will have pairs of
microscopic configurations with 𝛥𝑁𝐶 = ± 𝑛, with 𝑛 ∈ {1, 2,… , 𝐺 − 1}
which occur with the same probability. The outcome will consequently
be determined by the 𝛥𝑁𝐶 = 0 configurations, which only favor
cooperators when 𝑟 > 𝐺. As a result, there will be more situations that
are favorable than are detrimental to cooperators in this region, and
consequently, it will be more likely for them to survive.

In a different implementation of the random neighborhood, we
considered that both interacting sites are fixed as participants in each
other’s group. In this case, even in the region 𝑟 > 𝐺, the defector will
always have at least one cooperator in their group, resulting in the
extinction of cooperation. The random PGG case will be discussed later
in Section 3.2.

Evolution on regular lattices
Now, we investigate the effect of the different lattices described in

Section 2.1 on the final fraction of cooperators, 𝜌𝐶 . First, we present
the raw data with 𝐾 = 0.1 in Fig. 2(a), showing that a group with more
connections needs a greater return to compensate all group members.
This results in a higher 𝑟 value to sustain cooperation for the more
connected lattices. The general behavior of 𝜌𝐶 as a function of the nor-
malized synergistic factor, 𝑟∕𝐺, for the FPGG is presented in Fig. 2(b)
for the studied topologies. The first thing to notice is that, in all cases,
𝜌𝐶 → 1 around the same value of 𝑟∕𝐺. When looking only at the two-
dimensional lattice arrangements in Fig. 2(b) (disregarding the cubic
and 4D hypercubic lattices), we can see a very interesting behavior: for
all lattices, there is a coexistence region. In this region, the cooperation
level is higher for the most connected topologies (higher 𝐺). That is,
the Moore neighborhood (𝐺 = 9) has a higher cooperation level than
the triangular (𝐺 = 7), which in turn has more cooperation than the
kagome and square lattices, both with (𝐺 = 5). Lastly, the honeycomb
lattice (𝐺 = 4) is the one with the lowest cooperation level. Again,
this very interesting hierarchy of the 2D-lattices is only visible when
using the normalization 𝑟∕𝐺. The fact that the cubic and 4D lattices do
not follow this trend reinforces that a change in dimensionality is not
only a matter of increasing the number of a given site’s connections,
but rather it is a non-trivial topological change. Besides this point, we
can see that lattices with more neighbors in common between two
connected players are the most beneficial to cooperation. There is a
higher cooperation fraction in the kagome than in the von Neumann
neighborhood, both sharing the same number of agents in each group,
𝐺 = 5.

Next, we investigate the configurations of strategies that allow the
survival of cooperators. We present in the inset of Fig. 2(b) the final
cooperation density as a function of the normalized parameter for
different lattices in the case where 𝐾 = 0.001, i.e., very close to the
deterministic case. Comparing it with the possible values of 𝑟∕𝐺 from
Eq. (4) we can see which microscopic configurations are the most
frequent in the system’s dynamics. The figure shows that changes in
the cooperator density occur only for values of 𝑟∗∕𝐺 = 1∕2 and 1.
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Fig. 2. (a) Asymptotic fraction of cooperators, 𝜌𝐶 , as a function of 𝑟 for the Focal Public
Goods Game (FPGG). (b) shows cooperator density as a function of the normalized
multiplicative factor 𝑟∕𝐺 in the FPGG with 𝐾 = 0.1. The inset shows the analogous
results with a low noise value, 𝐾 = 0.001. The normalized data indicates that an
increasing number of neighbors favors the settlement of cooperative behavior. All
topologies with common neighbors between two connected players are the most
beneficial for cooperation. Even more, with the increase in common neighbors, we
see higher cooperation density in the coexistence region.

This shows that situations in which a cooperator has 1 or 2 more
𝐶 neighbors in its group (including themselves) than the competing
defector are the most important for the survival of cooperation, in-
dependently of the topology. Such configurations can be traced to
cooperators at cluster boundaries trying to survive the invasion by a
defector (see Appendix). In the region 𝑟∕𝐺 > 1, all configurations in
which a cooperator has more 𝐶 neighbors than a defector will favor
the former. Therefore cooperation will thrive for any topology. It is
important to note that different from the random neighborhood case,
this situation exists due to clustering and not because of the presence of
the focal cooperator in their group, since now they are also a member
of the interacting defector’s group. Now, for 𝑟∕𝐺 < 1, there will be
situations in which a cooperator will be invaded even with more 𝐶
neighbors than the defector. Depending on the topology, this can either
mean the extinction of cooperation or a region of coexistence between
the two strategies. For the von Neumann neighborhood, this situation is
enough to extinguish cooperation, as seen in the inset of Fig. 2(b). For
the triangular lattice and Moore neighborhood, a cluster of cooperators
can grow while being invaded by a line of defectors in the region 1∕2 <
𝑟∕𝐺 < 1. Fig. 3 shows snapshots of the time evolution in the Moore
neighborhood for both regions, where the possibility of penetrating
the cooperator cluster ensures the coexistence of both strategies. The
kagome lattice presents similar dynamics, as discussed in Appendix.

The honeycomb lattice is a peculiar case, having the smallest num-
ber of connections (𝐺 = 4). Because of that, there are very few
possibilities for a cluster of 𝐶 ’s to expand or to be invaded. Thus, if
we start with a random initial condition, the cooperator density will
decrease until only clusters formed in the initial condition survive.
4

Fig. 3. Time evolution of a cooperator cluster (blue) in the sea of defectors (red) on the
square lattice with the Moore neighborhood for 𝐾 = 0.001 (𝑡 = 0, 25, 100, 1000). The
top row illustrates the coexistence region (𝑟∕𝐺 = 0.98) where, despite the 𝐶 cluster
expansion, defectors survive by infiltration. The bottom row shows the dominance
region (𝑟∕𝐺 = 1.01), where this invasion is impossible, leading defectors to extinction.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

In this scenario, a cluster of 𝐶 ’s can neither expand nor be invaded
if 1∕2 < 𝑟∕𝐺 < 1, explaining the coexistence region and the low
density of cooperation shown in the inset of Fig. 2(b). As a general
rule, more connected lattices allow more links among cooperators
due to clustering. However, since this also happens between defectors
and cooperators, it is not obvious that the increase in the number of
connections would favor cooperation. Nevertheless, the number of mi-
croscopic configurations that give a fixed transition value in Eq. (4) and
benefit cooperation increases with the number of connections, despite
all lattices sharing the same 𝑟∕𝐺 transitions values (see Appendix).
Therefore, cooperators survive in a greater number of configurations
on highly connected lattices.

3.2. Public Goods Game

Evolution on regular lattices
Now we will investigate the effects of connections for the classic

PGG, where now agents participate in one game centered on themselves
and one game centered on each of its neighbors (remember that the
total number of neighbors, and thus games played, will be different for
each topology). In Fig. 4, we present the final fraction of cooperators as
a function of 𝑟∕𝐺. The first thing to note is that in general, the fraction
of cooperation will be higher in this case than in the analogous FPGG
for the same value of 𝑟∕𝐺. This is expected [77] since a cooperator now
participates in 𝐺 groups, earning 𝐺 self-contributions. Therefore the
positive effect of spatial reciprocity is amplified as previously discussed
in Section 3.1.

Regarding the different topologies, we see that the previous or-
dering remains unchanged: cooperation fraction increases with the
increasing number of neighbors on two-dimensional lattices. Similar to
the FPGG, we observe that the cubic and 4𝐷 lattices do not follow this
pattern. It is interesting to see that the increase in connections from the
FPGG to the PGG allows clusters in the honeycomb lattice to expand,
resulting in high levels of cooperation in the coexistence phase.

Contrary to what was found in the FPGG, the square lattice with
the von Neumann neighborhood has a higher cooperation fraction than
the kagome lattice in the PGG. To analyze this change of behavior, we
propose an approach similar to the one applied to the FPGG: the classic
PGG can be formulated as a FPGG with an extended interaction region
for the calculation of payoffs. Now, each player is taken into account
with a different weight in the focal player’s payoff since each neighbor
will play (and contribute to) a different number of games with the
focal player. The payoff’s calculation for any topology works as follows:
a focal cooperator will always have 𝐺 contributions from themselves
(they participate in 𝐺 different games); therefore, the focal player is
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Fig. 4. Final fraction of cooperators, 𝜌𝐶 , as a function of 𝑟∕𝐺 for the classic Public
Goods Game (PGG), with 𝐾 = 0.1. The inset shows the same data without normalizing
𝑟 by the group size on each lattice, 𝐺. Normalized scales suggest a trend in both PGG
games, where the presence of an increasing number of neighbors favors the settlement
of cooperative behavior.

taken into account with a weight equal to 𝐺. All 𝐺 − 1 first neighbors
have a weight that results from the sum of the following contributions:
one (from the game centered on themselves) plus one (from the game
centered on the focal player) plus the number of links with other
first neighbors (common neighbors with the focal player). All other
players in the population (which are not first neighbors with the focal
player) have a weight equal to the number of their connections to the
first neighbors. Fig. 5 illustrates this approach for the von Neumann
neighborhood and kagome lattice. The focal site’s weight is five because
it contributes to all five groups. Similarly, all players with weight two
participate in two groups of which the focal player is also a member,
etc. Now the payoffs of a cooperator on the square (von Neumann
neighborhood) and the kagome lattice are, respectively,

𝛱𝑆
𝐶 = 𝐺

( 𝑟𝑐
𝐺

)

+ 2𝑁 (𝐶)
𝐶2

( 𝑟𝑐
𝐺

)

+𝑁 (𝐶)
𝐶1

( 𝑟𝑐
𝐺

)

− 𝐺𝑐 (5)

𝛱𝐾
𝐶 = 𝐺

( 𝑟𝑐
𝐺

)

+ 3𝑁 (𝐶)
𝐶3

( 𝑟𝑐
𝐺

)

+𝑁 (𝐶)
𝐶1

( 𝑟𝑐
𝐺

)

− 𝐺𝑐 (6)

where 𝑁 (𝐶)
𝐶𝑖

is the number of cooperators with weight 𝑖 for that given
topology. From an inspection of Fig. 5, we see that 0 ⩽ 𝑁 (𝐶)

𝐶2
⩽ 8

and 0 ⩽ 𝑁 (𝐶)
𝐶1

⩽ 4 for the von Neumann neighborhood, and 0 ⩽
𝑁 (𝐶)

𝐶3
⩽ 4 and 0 ⩽ 𝑁 (𝐶)

𝐶1
⩽ 8 for the kagome lattice. Although the

spatial distribution of cooperators inside the group was not important
for the FPGG, here this is not the case: the cooperators’ locations are
relevant since common neighbors between players increase the weight
of a neighboring site. Defector payoffs are calculated in a manner
analogous to the expressions above. With this, the transition values for
𝑟 (analogous to Eq. (4)) are given for the von Neumann case by

𝑟∗ = 𝐺2

𝐺 + 2
(

𝑁 (𝐶)
𝐶2

−𝑁 (𝐷)
𝐶2

)

+
(

𝑁 (𝐶)
𝐶1

−𝑁 (𝐷)
𝐶1

)

= 𝐺2

𝐺 + 2𝛥𝑁𝐶2
+ 𝛥𝑁𝐶1

,

(7)

and now depend nonlinearly on 𝐺. Therefore, different topologies
present distinct normalized transition values (𝑟∗∕𝐺), in contrast to the
FPGG. Another important fact is that highly connected lattices possess
more transition values than lattices with fewer connections. This shows
that the increase in connections in the PGG game allows more scenarios
in which cooperators have more 𝐶 neighbors than defectors. We remark
that although payoffs are calculated in an extended region, strategy
flips occur only between first neighbors, as in the FPGG.

Since the size of a group is larger for the PGG than for the FPGG, it
is harder for cooperators to become isolated in the former. Therefore,
it is interesting to see how cluster size influences the survival of
5

Fig. 5. Illustration of the classic PGG viewed as a Focal PGG for (a) the square lattice
with von Neumann neighborhood and (b) kagome lattice. For this approach, each
neighbor is taken into account with a different weight in the focal player’s payoff,
since it participates in a different number of groups with the focal site, depending on
the lattice structure. It is important to notice that despite the group sizes highlighted
shown above, the focal player can only interact (compare payoffs to decide whether
to change strategy) with one of the first neighbors.

cooperation. With this purpose in mind, we simulated the dynamics
of a single cluster of cooperators in a sea of defectors. We assembled a
single initial seed cooperator with a varying number of 𝐶 neighbors,
𝑁𝐶 , for a fixed value of 𝑟 (𝑟∕𝐺 = 0.8) and 𝐾 = 0.001 (low noise).
The cluster is formed by sequentially distributing the cooperators in
layers: initially in the first neighbors, then in the other sites with
high weights, and finally in sites with lower weights. The fraction of
simulations in which cooperation survives with different initial cluster
sizes is shown in Fig. 6. When cooperation survives it always reaches
a constant density, 𝜌𝐶 ≈ 0.54 and 𝜌𝐶 ≈ 0.22, for the von Neumann
neighborhood and the kagome lattice, respectively (note that these
are essentially the same densities attained from the random initial
condition with 50% cooperators, see Fig. 4). Comparing both topologies
we see that for 𝑁𝐶 ⩽ 2, cooperation is always extinct in both of
them. For 3 ⩽ 𝑁𝐶 ⩽ 5, cooperation is extinct more frequently in the
von Neumann neighborhood than in the kagome lattice, whereas for
6 ⩽ 𝑁𝐶 ⩽ 12, the converse takes place. In both topologies, the same
pattern occurs: cooperation is more easily established with an increase
in 𝑁𝐶 until the first layer of high-weighted value sites is occupied.
After that, increases in the number of 𝐶 neighbors are not beneficial
to cooperation in general. This can be understood by noticing that if
a defector occupies a high-weight value site, many of the cooperators
from the initial cluster will also be their neighbors, thus allowing more
invasions to occur. Since for lower 𝑁𝐶 more of these defectors are
present, it is more likely for the cluster to be invaded and destroyed. On
the other hand, all the 𝐶 ’s at the border could already invade the sea
of defectors for 𝑟∕𝐺 > 𝑟∗∕𝐺 = 5∕7. Therefore an increase in 𝑁𝐶 beyond
the point at which the first layer with all high-weighted value sites is
occupied does not change the behavior of the cluster. For example, if
𝑁𝐶 = 8 for the von Neumann case, a 𝐶 at the border can invade a
defector in the location where a new 𝐶 with weight 1 would be. Thus,
the case 𝑁𝐶 = 9 is nothing more than the case 𝑁𝐶 = 8 at a later time
in the evolution of the system (the analogous situation happens for the
kagome lattice when 𝑁𝐶 = 4). Thus, for the kagome lattice, both small
and large clusters (𝑁𝐶 ⩾ 4) are equally likely to survive, while for the
von Neumann neighborhood, larger clusters are necessary.

For the initially random condition with 50% cooperators, we saw
in Fig. 4 that there was a higher density of cooperation with the von
Neumann neighborhood than in the kagome lattice. This is because the
initial density of 𝐶s was high enough for clusters with a high 𝑁𝐶 to
exist and expand, while small ones disappear in the first generations.
And, as noted already in Nowak’s introduction of spatial structure in
evolutionary games [25], the asymptotic density is almost completely
independent of the initial condition. Additionally, if we set the initial
random condition with 𝜌𝐶 = 0.1, large clusters become unlikely. Now
cooperation cannot survive in the von Neumann neighborhood while it
is still possible in the kagome lattice, corroborating our arguments.
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Fig. 6. Fraction of simulations (𝑛 = 1000) starting with a cooperator cluster of size
+𝑁𝐶 in a sea of defectors in which cooperation survives for the kagome and square

attice with von Neumann neighborhood. The initial cluster is created by sequentially
istributing 𝑁𝐶 cooperators in layers around a seed cooperator.

andom neighborhood
Recalling the random neighborhood discussed for the FPGG, we saw

hat cooperation only survived for 𝑟 > 𝐺. Eq. (7) refers to the transition
alues for the von Neumann neighborhood, but its form is similar for all
attices. Since we choose the neighborhood randomly from the entire
opulation, the chance of having a 𝐶 in the group is the same for both
nteracting sites, regardless of their strategies. This means that there
ill be the same number of situations that are favorable and prejudicial

o a cooperator with equal probability, considering 𝛥𝑁𝐶1
≠ 0 and

𝑁𝐶2
≠ 0 (see Section 3.1). However, if 𝑟 > 𝐺, all situations involving

𝑁𝐶1
= 𝛥𝑁𝐶2

= 0 will favor cooperators, making the total number
f microscopic configurations that favor cooperation greater than the
umber of those that do not.

Another important aspect of the classic PGG is that a cooperator’s
ayoff has 𝐺 contributions from themselves due to all 𝐺 groups in
hich they participate. This high gain is then able to compensate

he exploitation by defectors for some configurations, even when both
𝑁𝐶1

< 0 and 𝛥𝑁𝐶2
< 0. Consequently, transition values 𝑟∗ > 𝐺 now

ecome possible in contrast with the FPGG, in which cooperation could
ot survive for any parameter value if the number of cooperators was
qual to or less than the number of defectors in a group (see Eq. (4)).
herefore, if we consider that both interacting sites are fixed in each
ther’s group, there exists a finite value of 𝑟, with 𝑟 > 𝐺, above which
ooperation can be sustained.

.3. Prisoner’s Dilemma

We also analyze the Prisoner’s Dilemma game on the same topolo-
ies. The most general formulation of the PD game demands that 𝑇 >

𝑅 > 𝑃 > 𝑆 and 2𝑅 > 𝑇 + 𝑆, which allow many different possible
parametrizations for the payoffs. A commonly used one is to define a
benefit 𝛽 and a cost 𝛾, both positive, and set 𝑇 = 𝛽, 𝑅 = 𝛽−𝛾, 𝑃 = 0 and
𝑆 = −𝛾. In this case, it is possible to directly map the PD into the FPGG
by equating the payoffs for cooperators (defectors) of the two games;
the case without self-interaction and with the contribution parameter
of the FPGG fixed, 𝑐 = 1, was discussed in [73]. The case with self-
interaction presents some subtleties, which we describe here. Resorting
to the FPGG payoffs, Eqs. (1) and (2), and to the PD payoffs

𝛱𝐷,𝑃𝐷 = 𝑁 (𝐷)
𝐶 𝑇 + (𝐺 −𝑁 (𝐷)

𝐶 )𝑃 (8)

𝛱𝐶,𝑃𝐷 = (1 +𝑁 (𝐶)
𝐶 )𝑅 +

[

𝐺 − (𝑁 (𝐶)
𝐶 + 1)

]

𝑆, (9)

we can write
𝑇 = 𝑟𝑐

𝐺
≡ 𝛽

𝑅 = 𝑟𝑐
𝐺

− 𝑐
𝐺

= 𝛽 − 𝛾

= 0

𝑆 = − 𝑐 = −𝛾,

(10)
6

𝐺

Fig. 7. (a) Asymptotic fraction of cooperators for a Prisoner’s Dilemma with 𝑇 = 1+ 𝛾,
𝑅 = 1, 𝑃 = 0, 𝑆 = −𝛾, as function of 𝛾. (b) The PD can be imperfectly mapped onto the
PGG with a fixed contribution 𝑐, by using 𝑟𝑒𝑓𝑓 = (1 + 𝛾)∕𝛾. In this case, the behavior

of both games is qualitatively the same.

from which we obtain

𝑟 =
𝛽
𝛾

(11)

𝑐 = 𝛾 𝐺 (12)

for the corresponding FPGG; it is necessary to have 𝑟 > 1 to obey
the PD’s payoff hierarchy (to preserve 𝛽 > 𝛾). Here, from the results
of the FPGG, we recover the same simple rule as Nowak introduced
in [78] where natural selection favors cooperation for 𝛽∕𝛾 > 𝐺. Care

ust be taken when performing the above mapping, especially when
omparing different topologies, because now the value of the contribu-
ion, 𝑐, depends on the group size, but it is usually fixed at unity when
imulations of the FPGG are performed. This is not a problem when
nalyzing the games on only one topology, since, as seen in Section 2,
hanging the contribution can be viewed as a rescaling of the noise
rom 𝐾 to 𝐾 ′ = 𝐾∕𝑐 and we can map both games onto one another on
fixed lattice, but the result will be related to the rescaled noise 𝐾 ′ in

he FPGG. Of course, if the contribution value is corrected according to
q. (12) in the FPGG, there is no need to take into consideration the
hange in noise.

Next, we show the asymptotic cooperation fraction from the PD with
elf interaction simulated with a specific case of the parametrization
bove, 𝑇 = 1 + 𝛾, 𝑅 = 1, 𝑃 = 0 and 𝑆 = −𝛾, in a relatively
oisy scenario with 𝐾 = 0.1 fixed in different lattices in Fig. 7(a).
mapping to the FPGG will correspond to a less noisy case which

epends on each topology. Thus, we can only map the PD with self-
nteraction onto the FPGG for different noises in each lattice. However,
f we compare the outcomes on different topologies and still want to
aintain 𝑐 fixed, an imperfect mapping is still possible by defining an

ffective multiplicative factor following Eq. (11),

𝑒𝑓𝑓 =
1 + 𝛾

. (13)

𝛾
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Although Fig. 7(b) does not correspond to a FPGG, the behavior of 𝜌𝐶
s a function of 𝑟𝑒𝑓𝑓∕𝐺 for the PD nevertheless preserves the same
eatures found in the FPGG, as shown in Fig. 2(b), and both games
isplay qualitatively similar properties.

Finally, we remark that the parameter space of the PD is of higher
imensionality than that of the FPGG; therefore it is expected that
uch mappings between the two games are not always possible. As an
xample, the typically used weak dilemma parametrization, 𝑇 = 𝑏,
= 1, 𝑃 = 𝑆 = 0 with 𝑏 > 1 cannot be transformed into a FPGG,

ecause it would yield a null contribution.

. Summary

We performed evolutionary Monte Carlo simulations in the most
sual two-dimensional regular topologies, i.e., the square, triangular,
agome and honeycomb lattices. For completeness, we also compared
he results with the cubic and 4D hypercubic lattices. First, we ana-
yzed the random neighborhood case, where all group members were
andomly selected among the population at each time step, suppressing
patial reciprocity. In this scenario, cooperators cannot coexist with
efectors and only survive under the weak altruism condition, 𝑟∕𝐺 > 1,
or the FPGG and the PGG. On the other hand, coexistence is possible
n the regular lattices, since now cooperators can avoid exploitation by
orming compact groups. We found that topologies with larger group
izes, 𝐺, are the most beneficial for cooperation in both the FPGG and
GG games. Furthermore, cooperation can be enhanced by allowing
hared neighbors between two connected players for the FPGG.

We propose a representation of the classic PGG as a focal game with
n extended neighborhood where each site is weighted accordingly
o its layer defined by the specific lattice topology. This allows us to
btain a single analytical framework to represent any regular lattice
s different weighting schemes for the focal player’s payoff. We used
his scheme to point out important microscopic differences between
he kagome lattice and the square lattice with the von Neumann
eighborhood for the PGG and show that a more clustered network
oes not necessarily favor cooperation. To our knowledge, this is the
irst time this approach has been presented. In this game, the location of
he 𝐶 neighbors in the cluster becomes relevant since closer neighbors
articipate in more than one game together. Therefore, for lattices with
he same 𝐺 and a different number of shared connections (clustering
oefficient), cooperation can be enhanced or inhibited depending on
he situation.

We also showed that a mapping between the PD and FPGG games is
ometimes possible, depending on the parametrization chosen for the
D. When possible it is lattice dependent, meaning that a different value
f the contribution in the FPGG is necessary for each lattice. However,
f a fixed contribution is used, it is still possible to define an imperfect
apping with an effective multiplicative parameter in the FPGG.

Spatial reciprocity is a powerful enhancer of cooperation. In this
ork, we explored how diverse regular connection topologies can
nhance cooperation in different games. But there are also known
ituations where spatial reciprocity inhibits cooperation. For example,
he use of the aspiration rule for the updating of strategies [79] found
o improvement from the well-mixed to a spatially structured case.
ther than that, it was found that the introduction of spatial structure
an even jeopardize cooperation in the snowdrift game [65]. As we
an see, while spatial reciprocity is one of the strongest mechanisms to
romote the spontaneous emergence of cooperation, many intricacies
till need to be studied, especially in situations involving different
opologies.
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Appendix

Here we explore the conditions for the survival of a cooperator
cluster in a sea of defectors for the FPGG in the deterministic regime,
and also observed in low noise simulations shown in the inset of
Fig. 2(b). We illustrate a few microscopic situations in Fig. 8 for pos-
sible strategy flips on the square lattice with von Neumann and Moore
neighborhoods, the kagome, and triangular lattices. In a spatial lattice,
cooperators survive by clustering; however, cooperators in contact with
the sea of defectors will only survive if the inner 𝐶 ’s compensate
their exploitation, i.e., 𝑁 (𝐶)

𝐶 ⩾ 𝑁 (𝐷)
𝐶 (see Eq. (4)). Fig. 8(a) shows the

expansions due to cooperators at the borders of a cluster. Although
these edge expansions become possible at and above 𝑟∗∕𝐺 = 1∕3
(but below 𝑟∗∕𝐺 = 1∕2), they occur at a much lower frequency than
all possible invasions by defectors and, therefore, cooperation is not
supported at low values of 𝑟. We notice that there is no such transition
at this value for the kagome lattice. Cooperation can become viable
when clusters survive both border and corner invasions and expand,
which can only happen for 𝑟∕𝐺 > 1∕2, as shown in Fig. 8(b). If 𝑟∕𝐺 > 1,
we are in a region where a cooperator with 𝑁 (𝐶)

𝐶 ⩾ 𝑁 (𝐷)
𝐶 survives

all possible invasions and expand, dominating the population for all
topologies. The interesting region is when 1∕2 < 𝑟∕𝐺 < 1 because as the
cluster expands, some invasions are possible and cooperator dominance
cannot occur. Examples of possible invasions for each lattice are shown
in Fig. 8(c). The simultaneous existence of expansions and invasions is
what drives the dynamical equilibrium in this parameter region, which
allow clusters to change shape while preserving the total cooperator
density.

For the square lattice with the von Neumann neighborhood, the
invasions outnumber the expansions during the system evolution and
cooperation becomes extinct in a low noise scenario. Despite sharing
the same group size, 𝐺 = 5, the kagome lattice and the von Neumann
neighborhood differ in that the former has common links between
two connected players, as discussed in Section 2.1, thus being more
clustered in this sense. Therefore a cluster of 𝐶 ’s can expand in the
kagome lattice, with support from the inner 𝐶 ’s, what explains the
coexistence region in Fig. 2.

As we change lattices, increasing group size, there will be more
configurations that generate the same transition values 𝑟∗∕𝐺, because
the same values of 𝛥𝑁𝐶 can be achieved with more sets of 𝑁 (𝐶)

𝐶 and
𝑁 (𝐷)

𝐶 . Such configurations can be favorable or detrimental to coopera-
tion. However, only those that satisfy 𝑁 (𝐶)

𝐶 ⩾ 𝑁 (𝐷)
𝐶 , the ones related in

general to clustered cooperators, will matter as the system evolves. As a
result, cooperators survive more configurations in the more connected
lattices. Thus, despite there being similar invasion in the von Neumann

neighborhood, triangular lattice, and Moore neighborhoods, cooperator

https://github.com/lucasflores42
https://github.com/lucasflores42
https://github.com/lucasflores42
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Fig. 8. Microscopic configurations of cooperators (blue) and defectors (red) that illustrate possible expansions or invasions of a cooperator cluster for regular lattices (square lattice
with von Neumann neighborhood, kagome lattice, triangular lattice, and square lattice with Moore neighborhood). The arrows indicate possible cluster expansions (a) along edges,
with 𝑟∕𝐺 > 1∕3, (note that there is no transition with this value for the kagome lattice) (b) and along vertices, with 𝑟∕𝐺 > 1∕2. The top site with both colors in the kagome lattice
indicates that this transition is independent of that site’s strategy. Although some expansions become possible at 𝑟∗ = 1∕3, they alone are not sufficient for cooperation to survive.
In (c), we display cluster invasions by defectors that are possible when 𝑟∕𝐺 < 1. Therefore, in the region 1∕2 < 𝑟∕𝐺 < 1, the existence of both expansions and invasions with similar
frequencies is what allows dynamical coexistence between the two strategies. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
clusters will be able to expand and survive due to the increase in
connections in the latter two.

An analogous analysis of microscopic configurations can also be
made for the PGG, considering that it can be mapped to a FPGG with
an extended neighborhood. However, since the group sizes and the
number of microscopic configurations become much larger, we believe
that displaying them would be more confusing than helpful.
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